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ABSTRACT: Use of formate salts as a hydride as well as a
CO2 source was achieved in a PGeP-palladium complex-
catalyzed hydrocarboxylation of allenes through a highly
efficient decarboxylation−carboxylation process. This reaction
proceeds under mild conditions and provides an alternative
strategy for utilizing formate salts as a C1 source.

Utilization of renewable chemical feedstock for the
synthesis of various value-added fine chemicals is an

important strategy in synthetic chemistry.1 In this regard,
formic acid and its conjugated base, formate salt, are a
promising renewable C1 resource because they are cheap,
abundant, and readily available from a biomass process2 and
hydrogenation of CO2.

3 Traditionally, formic acid or formate
salts are employed as a reductant in transition-metal catalyzed
transfer hydrogenation, in which they act as a dihydrogen or
hydride donor with release of CO2 as an innocent coproduct.4

In contrast, use of formic acid or its salts as a C1 source
through a transition-metal catalyzed carbon−carbon bond
forming reaction has rarely been achieved;5,6 Simonato et al.
reported hydrocarboxylation of alkenes,7 and several groups
reported hydroxycarbonylation of aryl and vinyl halides.8,9 In
these reactions, CO is generated in situ from formic acid or
formate salts, and they generally require excess formic acid or
its salts and harsh conditions to realize efficient conversion.
Thus, development of a more atom-economical and efficient
protocol for utilizing formic acid or its salts as a C1 source is
still highly desirable. Herein, we demonstrate a new approach
for using formate salt as a C1 source through Pd-catalyzed
hydrocarboxylation of allenes, in which the formate salt is
disassembled and added to allenes as hydride and CO2 with
high efficiency. This reaction realized a new CO2-recycling
protocol with formate salts for the first time, providing a facile
method for the synthesis of synthetically useful β,γ-unsaturated
carboxylic acids.10

Previously, we have reported PSiP-palladium complex
catalyzed-hydrocarboxylation of allenes and 1,3-dienes with
CO2 using AlEt3 or its analogues as a stoichiometric
reductant.11,12 Toward development of a new and efficient
utilization of formic acid or its salts as a C1 source, we
envisaged the possibility of using formate salt not only as a
hydride donor instead of aluminum reagent but also as a CO2
source in the hydrocarboxylation reaction as shown in Scheme
1. We expected that a palladium formate complex A bearing a
group 14 element-bridged pincer type ligand13 would undergo
decarboxylation to produce a palladium hydride complex B and
CO2 reversibly.

14 Hydropalladation of an allene with B would

afford a σ-allypalladium complex C, which could react with the
released CO2 to afford a palladium carboxylate D.15 Finally
anion exchange with formate would give the desired hydro-
carboxylation product and regenerate the palladium formate A.
The most difficult challenge of this strategy is the recycling of
CO2 through the reaction with the σ-allypalladium intermediate
C. There exists only a catalytic amount of CO2 in the reaction
vessel16 whereas previously reported carboxylation reactions are
usually carried out with a large excess of CO2 gas.

17

We began our studies employing allene 2a as a model
substrate and HCOONBnMe3 as a formate salt. In the presence
of 5 mol % of palladium complex 1a bearing a PSiP-pincer type
ligand, the reaction of 2a with 1.05 equiv of formate proceeded
at room temperature in DMF to give β,γ-unsaturated carboxylic
acid 3a in 39% yield (Table 1, entry 1). Interestingly, a
screening of catalysts revealed that palladium complex 1b
having a PGeP-pincer type ligand improved the yield
significantly (83%, entry 2), which could be attributed to the
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Scheme 1. Expected Catalytic Cycle
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increased stability of the corresponding allylpalladium inter-
mediate (entries 3 and 4).18,19 Finally PGeP-Pd complex 1d
bearing electron-donating phosphorus atoms was found to be
the most effective catalyst (entry 5). Among ammonium
formates, the benzyl(trimethyl)ammonium salt gave the highest
yield (entries 5−7). It should be noted that the reaction also
proceeded with potassium and cesium formate, which are cheap
and commercially available formate salts, to give 3a in moderate
to good yield under similar conditions (entries 8 and 9).
With the optimized conditions in hand, we then investigated

the substrate scope of the hydrocarboxylation reaction (Table
2). 1,1-Disubstituted allenes were suitable substrates for this
reaction to give α-quaternary-β,γ-unsaturated carboxylic acids
selectively. A variety of functional groups were tolerated, such
as alkene, silyl ether, ester, imide, carbamate, and ketal,
affording functionalized carboxylic acid derivatives in good to
high yield (entries 1−3, 6, 8, and 9). It should be noted that
substrates 2e and 2h with an unmasked hydroxyl group and an
acidic amide proton could undergo this hydrocarboxylation
efficiently (entries 4 and 6). Also, allene 2f which contains an
aryl halide substitution is applicable in this reaction (entry 5).
Moreover, ketone 2k and even aldehyde 2l which are sensitive
to the nucleophile were compatible with the reaction
conditions (entries 10 and 11). The use of prochiral substrate
2m provided the desired product in 85% yield with high
diastereoselectivity (93:7 dr, entry 12). Interestingly, when aryl-
substituted allene 2n was employed in this hydrocarboxylation,
the regioselectivity of carboxylation completely changed to give
linear product 5n instead of a branched one at 80 °C (entries
13). Besides 1,1-disubstituted allenes, the reaction works with
1,3-disubstituted and monosubstituted allenes successfully.
Hydrocarboxylation of 2o and 2q delivers the β,γ-unsaturated
carboxylic acids 4o and 4q in good yield as a single isomer
although phenyl-substituted allene 2p afforded linear product
5p selectively (entries 14−16). In contrast to the previous
system using AlEt3 as the reductant, isomerization of the alkene
moiety of products was not observed at all in this reaction

probably due to the strong base or acid-free conditions with
formate.20 Finally, it was found that the reaction of 3-methyl-
1,2-butadiene 2r with commercially available, cheap HCOOK
proceeded efficiently on 10 mmol scale to give 2,2-dimethylbut-
3-enoic acid 3r in 90% yield, demonstrating the practical utility
of this reaction for carboxylic acid synthesis (Scheme 2). This is
the first example of a highly efficient, atom economical

Table 1. Optimization of Reaction Conditionsa

entry catalyst Y temp yield/%b

1 5 mol % 1a NBnMe3 rt 39
2 5 mol % 1b NBnMe3 rt 83
3 5 mol % 1c NBnMe3 rt 92
4 2.5 mol % 1c NBnMe3 40 °C 92
5 2.5 mol % 1d NBnMe3 40 °C 93(92)c

6 2.5 mol % 1d NnBu4 40 °C 85
7 2.5 mol % 1d NMe4 40 °C 83
8 2.5 mol % 1d K 40 °C 48
9 2.5 mol % 1d Cs 40 °C 66

aAll reactions were run using 0.2 mmol of 2a (0.2 M). bDetermined by
1H NMR using 1,1,2,2-tetrachloroethane as an internal standard.
cIsolated yield.

Table 2. Substrate Scopea,b

aConditions: 2 (0.2 mmol), HCOONBnMe3 (0.21 mmol), 1d (0.005
mmol), DMF (0.2 M). bIsolated yields. cIsolated as methyl ester after
treatment with TMSCHN2.

d1d (5 mol %) was used. eH-
COONBnMe3 (0.3 mmol) was used. fdr = 93:7.
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hydrocarboxylation of unsaturated hydrocarbons using formate
as both the reductant and CO2 source. It should also be noted
that the reaction greatly improves substrate generality with
various functional groups due to the mild reactivity of formate
compared with previously reported hydrocarboxylation reac-
tions using a metallic reductant.
A set of 13C-labeling experiments with H13COONBnMe3

provided strong support for the initially proposed mechanism
as follows.21 First, the reaction of allene 2a with
H13COONBnMe3 under optimized conditions afforded the
β,γ-unsaturated carboxylic acid, which was isolated as its methyl
ester 4a in 93% yield (Table 3, entry 1). 13C-incorporation at

the carboxyl group of 4a was determined to be >98% by MS,
demonstrating that the carboxyl group in the product
originated from formate through C−C bond formation.
Second, the common carbonylation pathway involving
decomposition of formate to CO and H2O is ruled out by a
labeling experiment under a CO atmosphere, which afforded
>96% 13C-labeled product 4a in good yield, clearly demonstrat-
ing there is no participation of carbon monoxide as the C1
source in the catalytic cycle (entry 2).7 Finally, the reaction
with H13COONBnMe3 under nonlabeled CO2 (ca. 6 equiv to
2a) gas resulted in a dramatic decrease of product yield and
13C-incorporation (36%, ca. 13% 13C, entry 3). The
considerable exchange of 13C and 12C can be explained by
generation of free 13CO2 from 13C-formate and reaction of
allylpalladium with excess 12CO2 in the reaction vessel through
the Pd-mediated decarboxylation−carboxylation process. More-
over, the inhibition effect of external CO2 gas on the reaction
rate implies decarboxylation of palladium formate is reversible.
This equilibrium was also confirmed by treatment of
H13COONBnMe3 with 2.5 mol % 1d under CO2 in DMF,
resulting in ca. 45% loss of 13C content of the formate
employed after 6 h at room temperature.22 These experimental
results clearly support the proposed CO2-recycling mechanism
in Scheme 1, in which formate works as a hydride and CO2
source through reversible decarboxylation of formate palladium
complex A and successive formation of σ-allylpalladium
intermediate B followed by nucleophilic addition to the
released CO2. In this reaction, the PGeP-pincer ligand played
a crucial role to realize this unprecedented CO2-recycling

mechanism through generation and reaction of a carbon
nucleophile. It is also noted that the carboxylation reaction
proceeded quite efficiently with a catalytic amount of CO2
generated in the reaction medium. More detailed investigations
on the reaction mechanism and the role of the pincer ligand are
in progress.
In conclusion, we have developed the first general protocol

for formate-mediated hydrocarboxylation without additional
CO2. In this reaction, abundant and cheap formate salt was
employed as both hydride and CO2 donors, demonstrating new
utilization of formate as a C1 source in synthetic chemistry.
The reaction displayed broad functional group compatibility,
with alcohol, amide, aldehyde, and ketone substituents
tolerated. Isotope labeling experiments supported the un-
precedented CO2-recycling mechanism through generation and
reaction of a carbon nucleophile. Further mechanistic study and
application of this protocol to other substrates are ongoing in
our laboratory.
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